TODO

The Taylor series of $f(x)$ that is infinitely differentiable in a neighborhood of $a$

Maclaurin series of $e^x$

Maclaurin series of $\sin x$

Maclaurin series of $\cos x$

Maclaurin series of $\ln (1+x)$

Maclaurin series of $(1+x)^m$

$(e^x)’ = \ ?$
$(e^x)’ = e^x$

$(1)’ = \ ?$
$(1)’ = 0$

$(x^a)’ = \ ?$
$(x^a)’ = a\; x^{a-1}$

$(\log_a x)’ = \ ?$
$(\log_a x)’ = \frac{1}{x \ln a}$

$(\ln x)’ = \ ?$
$(\ln x)’ = \frac{1}{x}$

$(\sin x)’ = \ ?$
$(\sin x)’ = \cos x$

$(\cos x)’ = \ ?$
$(\cos x)’ = - \sin x$

$(\operatorname{tg} x)’ = \ ?$

$(\arcsin x)’ = \ ?$

$(\arccos x)’ = \ ?$

$(\operatorname{arctg} x)’ = \ ?$
$(\operatorname{arctg} x)’ = \frac{1}{1+x^2}$

$(af + bg)’ = \ ?$
$(af + bg)’ = af’ + bg’$

$(fg)’ = \ ?$
$(fg)’ = f ‘g + fg’$

$\left(\frac{f}{g} \right)’ = \ ?$
$\left(\frac{f}{g} \right)’ = \frac{f’g - fg’}{g^2}$

$\left(f (g) \right)’ = \ ?$
$\left(f (g) \right)’ = f’(g) \cdot g’$












integration by parts


integration by parts


integration by substitution


















five special functions in calculus



Series convergence

https://en.wikipedia.org/wiki/Convergence_tests

http://www.math.hawaii.edu/~ralph/Classes/242/SeriesConvTests.pdf
http://www.toomey.org/tutor/harolds_cheat_sheets/Harolds_Series_Convergence_Tests_Cheat_Sheet_2016.pdf

http://tutorial.math.lamar.edu/Classes/CalcII/SeriesStrategy.aspx
http://www.furius.ca/cqfpub/doc/series/series.pdf
http://www.toomey.org/tutor/harolds_cheat_sheets/Harolds_Calculus_Notes_Cheat_Sheet_2017.pdf
https://www.math.wvu.edu/~hjlai/Teaching/Math156_Website/Series Cheat Sheet.pdf
https://www.math.hmc.edu/calculus/tutorials/convergence/

http://infotables.ru/matematika/66-ryady/628-priznaki-skhodimosti-chislovogo-ryada-tablitsa

Summary

Nesessary condition: if then diverges

Absolute convergence: does converge?

Conditional convergence


Ratio test:

Root test:

Direct comparison: $ \vert a_n \vert \le \vert b_n \vert $

Limit comparision:

Integral test:






Abel’s test:

Cauchy condensation test:






Harmonic series: converges if $p>1$, diverges if $p \le 1$

Geometric series: , when $\vert q \vert \ < 1$

Alternating series

Telescoping test: , summands cancel out in partial sums.

Taylor series test: is it Taylor series?

Root test

https://en.wikipedia.org/wiki/Root_test

or

Telescoping test

https://en.wikipedia.org/wiki/Telescoping_series

https://math.stackexchange.com/questions/104918/how-to-analyze-convergence-and-sum-of-a-telescopic-series-i-cant-find-a-generi

Cauchy condensation test

https://en.wikipedia.org/wiki/Cauchy_condensation_test

Abel’s test

https://en.wikipedia.org/wiki/Abel's_test

Misc

Bernoulli’s inequality

It approximates exponentiation of $1+x$:

for $x \geq -1$

Or this:

More

Sequences

is a polynomial $p(k)$ of degree $k+1$

Limits

Harmonic series, https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Divergence:

Alternating harmonic series — special case of Taylor series of logarithm; it’s conditionally convergent, not absolutely though, if rearranged the sum becomes different:

https://en.wikipedia.org/wiki/Telescoping_series

Gradient

Magnitude of gradient is equal to tan of angle of tangent plane.

Questions