TODO
The Taylor series of $f(x)$ that is infinitely differentiable in a neighborhood of $a$
Maclaurin series of $e^x$
Maclaurin series of $\sin x$
Maclaurin series of $\cos x$
Maclaurin series of $\ln (1+x)$
Maclaurin series of $(1+x)^m$
$(e^x)’ = \ ?$
$(e^x)’ = e^x$
$(1)’ = \ ?$
$(1)’ = 0$
$(x^a)’ = \ ?$
$(x^a)’ = a\; x^{a-1}$
$(\log_a x)’ = \ ?$
$(\log_a x)’ = \frac{1}{x \ln a}$
$(\ln x)’ = \ ?$
$(\ln x)’ = \frac{1}{x}$
$(\sin x)’ = \ ?$
$(\sin x)’ = \cos x$
$(\cos x)’ = \ ?$
$(\cos x)’ = - \sin x$
$(\operatorname{tg} x)’ = \ ?$
$(\arcsin x)’ = \ ?$
$(\arccos x)’ = \ ?$
$(\operatorname{arctg} x)’ = \ ?$
$(\operatorname{arctg} x)’ = \frac{1}{1+x^2}$
$(af + bg)’ = \ ?$
$(af + bg)’ = af’ + bg’$
$(fg)’ = \ ?$
$(fg)’ = f ‘g + fg’$
$\left(\frac{f}{g} \right)’ = \ ?$
$\left(\frac{f}{g} \right)’ = \frac{f’g - fg’}{g^2}$
$\left(f (g) \right)’ = \ ?$
$\left(f (g) \right)’ = f’(g) \cdot g’$
integration by parts
integration by parts
integration by substitution
five special functions in calculus
Series convergence
https://en.wikipedia.org/wiki/Convergence_tests
http://www.math.hawaii.edu/~ralph/Classes/242/SeriesConvTests.pdf
http://www.toomey.org/tutor/harolds_cheat_sheets/Harolds_Series_Convergence_Tests_Cheat_Sheet_2016.pdf
http://tutorial.math.lamar.edu/Classes/CalcII/SeriesStrategy.aspx
http://www.furius.ca/cqfpub/doc/series/series.pdf
http://www.toomey.org/tutor/harolds_cheat_sheets/Harolds_Calculus_Notes_Cheat_Sheet_2017.pdf
https://www.math.wvu.edu/~hjlai/Teaching/Math156_Website/Series Cheat Sheet.pdf
https://www.math.hmc.edu/calculus/tutorials/convergence/
http://infotables.ru/matematika/66-ryady/628-priznaki-skhodimosti-chislovogo-ryada-tablitsa
Summary
Nesessary condition: if then diverges
Absolute convergence: does converge?
Conditional convergence
Ratio test:
Root test:
Direct comparison: $ \vert a_n \vert \le \vert b_n \vert $
Limit comparision:
Integral test:
Abel’s test:
Cauchy condensation test:
Harmonic series: converges if $p>1$, diverges if $p \le 1$
Geometric series: , when $\vert q \vert \ < 1$
Alternating series
Telescoping test: , summands cancel out in partial sums.
Taylor series test: is it Taylor series?
Root test
https://en.wikipedia.org/wiki/Root_test
or
Telescoping test
https://en.wikipedia.org/wiki/Telescoping_series
Cauchy condensation test
https://en.wikipedia.org/wiki/Cauchy_condensation_test
Abel’s test
https://en.wikipedia.org/wiki/Abel's_test
Misc
Bernoulli’s inequality
It approximates exponentiation of $1+x$:
for $x \geq -1$
Or this:
More
Sequences
is a polynomial $p(k)$ of degree $k+1$
Limits
Harmonic series, https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Divergence:
Alternating harmonic series — special case of Taylor series of logarithm; it’s conditionally convergent, not absolutely though, if rearranged the sum becomes different:
https://en.wikipedia.org/wiki/Telescoping_series
Gradient
Magnitude of gradient is equal to tan of angle of tangent plane.